162 research outputs found

    W. M. Keck Observatory's next-generation adaptive optics facility

    Get PDF
    We report on the preliminary design of W.M. Keck Observatory's (WMKO's) next-generation adaptive optics (NGAO) facility. This facility is designed to address key science questions including understanding the formation and evolution of today's galaxies, measuring dark matter in our galaxy and beyond, testing the theory of general relativity in the Galactic Center, understanding the formation of planetary systems around nearby stars, and exploring the origins of our own solar system. The requirements derived from these science questions have resulted in NGAO being designed to have near diffraction-limited performance in the near-IR (K-Strehl ~ 80%) over narrow fields (< 30" diameter) with modest correction down to ~ 700 nm, high sky coverage, improved sensitivity and contrast and improved photometric and astrometric accuracy. The resultant key design features include multi-laser tomography to measure the wavefront and correct for the cone effect, open loop AO-corrected near-IR tip-tilt sensors with MEMS deformable mirrors (DMs) for high sky coverage, a high order MEMS DM for the correction of atmospheric and telescope static errors to support high Strehls and high contrast companion sensitivity, point spread function (PSF) calibration to benefit quantitative astronomy, a cooled science path to reduce thermal background, and a high-efficiency science instrument providing imaging and integral field spectroscopy

    The science case for the Next Generation AO system at W. M. Keck Observatory

    Get PDF
    The W. M. Keck Observatory is designing a new adaptive optics system providing precision AO correction in the near infrared, good correction at visible wavelengths, and multiplexed spatially resolved spectroscopy. We discuss science cases for this Next Generation AO (NGAO), and show how the system requirements were derived from these science cases. Key science drivers include asteroid companions, planets around low-mass stars, general relativistic effects around the Galactic Center black hole, nearby active galactic nuclei, and high-redshift galaxies (including galaxies lensed by intervening galaxies or clusters). The multi-object AO-corrected integral field spectrograph will be optimized for high-redshift galaxy science

    Exploring the Structure of Distant Galaxies with Adaptive Optics on the Keck-II Telescope

    Get PDF
    We report on the first observation of cosmologically distant field galaxies with an high order Adaptive Optics (AO) system on an 8-10 meter class telescope. Two galaxies were observed at 1.6 microns at an angular resolution as high as 50 milliarcsec using the AO system on the Keck-II telescope. Radial profiles of both objects are consistent with those of local spiral galaxies and are decomposed into a classic exponential disk and a central bulge. A star-forming cluster or companion galaxy as well as a compact core are detected in one of the galaxies at a redshift of 0.37+/-0.05. We discuss possible explanations for the core including a small bulge, a nuclear starburst, or an active nucleus. The same galaxy shows a peak disk surface brightness that is brighter than local disks of comparable size. These observations demonstrate the power of AO to reveal details of the morphology of distant faint galaxies and to explore galaxy evolution.Comment: 5 pages, Latex, 3 figures. Accepted for publication in P.A.S.

    Dynamical Masses of Young Stars in Multiple Systems

    Full text link
    We present recent measurements of the orbital motion in the young binaries DF Tau and ZZ Tau, and the hierarchical triple Elias 12, that were obtained with the Fine Guidance Sensors on the HST and at the Keck Observatory using adaptive optics. Combining these observations with previous measurements from the literature, we compute preliminary orbital parameters for DF Tau and ZZ Tau. We find that the orbital elements cannot yet be determined precisely because the orbital coverage spans only about 90 degr in position angle. Nonetheless, the range of possible values for the period and semi-major axis already defines a useful estimate for the total mass in DF Tau and ZZ Tau, with values of 0.90{+0.85}{-0.35} M_sun and 0.81{+0.44}{-0.25} M_sun, respectively, at a fiducial distance of 140 pc.Comment: 26 pages, 9 figures, accepted for publication in A

    Science with the Keck Interferometer ASTRA Program

    Get PDF
    The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide phase referencing and astrometric observations at the Keck Interferometer, leading to enhanced sensitivity and the ability to monitor orbits at an accuracy level of 30-100 microarcseconds. Here we discuss recent scientific results from ASTRA, and describe new scientific programs that will begin in 2010-2011. We begin with results from the "self phase referencing" (SPR) mode of ASTRA, which uses continuum light to correct atmospheric phase variations and produce a phase-stabilized channel for spectroscopy. We have observed a number of protoplanetary disks using SPR and a grism providing a spectral dispersion of ~2000. In our data we spatially resolve emission from dust as well as gas. Hydrogen line emission is spectrally resolved, allowing differential phase measurements across the emission line that constrain the relative centroids of different velocity components at the 10 microarcsecond level. In the upcoming year, we will begin dual-field phase referencing (DFPR) measurements of the Galactic Center and a number of exoplanet systems. These observations will, in part, serve as precursors to astrometric monitoring of stellar orbits in the Galactic Center and stellar wobbles of exoplanet host stars. We describe the design of several scientific investigations capitalizing on the upcoming phase-referencing and astrometric capabilities of ASTRA.Comment: Published in the proceedings of the SPIE 2010 conference on "Optical and Infrared Interferometry II

    The Discovery of a Companion to the Very Cool Dwarf Gl~569~B with the Keck Adaptive Optics Facility

    Get PDF
    We report observations obtained with the Keck adaptive optics facility of the nearby (d=9.8 pc) binary Gl~569. The system was known to be composed of a cool primary (dM2) and a very cool secondary (dM8.5) with a separation of 5" (49 Astronomical Units). We have found that Gl~569~B is itself double with a separation of only 0".101±\pm0".002 (1 Astronomical Unit). This detection demonstrates the superb spatial resolution that can be achieved with adaptive optics at Keck. The difference in brightness between Gl~569~B and the companion is ∼\sim0.5 magnitudes in the J, H and K' bands. Thus, both objects have similarly red colors and very likely constitute a very low-mass binary system. For reasonable assumptions about the age (0.12~Gyr--1.0~Gyr) and total mass of the system (0.09~M⊙_\odot--0.15~M⊙_\odot), we estimate that the orbital period is ∼\sim3 years. Follow-up observations will allow us to obtain an astrometric orbit solution and will yield direct dynamical masses that can constrain evolutionary models of very low-mass stars and brown dwarfs

    Keck Observatory Laser Guide Star Adaptive Optics Discovery and Characterization of a Satellite to the Large Kuiper Belt Object 2003 EL_(61)

    Get PDF
    The newly commissioned laser guide star adaptive optics system at Keck Observatory has been used to discover and characterize the orbit of a satellite to the bright Kuiper Belt object 2003 EL_(61). Observations over a 6 month period show that the satellite has a semimajor axis of 49,500 ± 400 km, an orbital period of 49.12 ± 0.03 days, and an eccentricity of 0.050 ± 0.003. The inferred mass of the system is (4.2 ± 0.1) × 10^(21) kg, or ~32% of the mass of Pluto and 28.6% ± 0.7% of the mass of the Pluto-Charon system. Mutual occultations occurred in 1999 and will not occur again until 2138. The orbit is fully consistent neither with one tidally evolved from an earlier closer configuration nor with one evolved inward by dynamical friction from an earlier more distant configuration

    W. M. Keck Observatory's next-generation adaptive optics facility

    Get PDF
    We report on the preliminary design of W.M. Keck Observatory's (WMKO's) next-generation adaptive optics (NGAO) facility. This facility is designed to address key science questions including understanding the formation and evolution of today's galaxies, measuring dark matter in our galaxy and beyond, testing the theory of general relativity in the Galactic Center, understanding the formation of planetary systems around nearby stars, and exploring the origins of our own solar system. The requirements derived from these science questions have resulted in NGAO being designed to have near diffraction-limited performance in the near-IR (K-Strehl ~ 80%) over narrow fields (< 30" diameter) with modest correction down to ~ 700 nm, high sky coverage, improved sensitivity and contrast and improved photometric and astrometric accuracy. The resultant key design features include multi-laser tomography to measure the wavefront and correct for the cone effect, open loop AO-corrected near-IR tip-tilt sensors with MEMS deformable mirrors (DMs) for high sky coverage, a high order MEMS DM for the correction of atmospheric and telescope static errors to support high Strehls and high contrast companion sensitivity, point spread function (PSF) calibration to benefit quantitative astronomy, a cooled science path to reduce thermal background, and a high-efficiency science instrument providing imaging and integral field spectroscopy
    • …
    corecore